$\qquad$ Date

## Chapter 1 \& 2 - Final Review

Identify each statement as true (T) or false (F)

1) The ray from $R$ through points $P$ or $Q$ is written in symbolic form as $\overrightarrow{R Q}$ or $\overrightarrow{R P}$.
2) 

 The line segment from P to Q is written in symbolic form as $\overline{R P}$.
3)


The building blocks of geometry are points, lines, and rays. planes
4)


An obtuse angle is an angle whose measure is more than $180^{\circ}$
$90^{\circ}$
5) T An altitude in an acute triangle is a perpendicular segment connecting a vertex with the opposite side.
6)


A diagonal is a line segment in a polygon connecting any two vertices.
7)


If $\overleftrightarrow{A B}$ intersects $\overleftrightarrow{C D}$ at point P , then $\angle A P C$ and $\angle A P D$ have to be a pair of vertical angles.
8)
 If the sum of the measures of two angles is $90^{\circ}$, 4 R en the two angles are supplementary
9)


If two lines do not intersect, then they are parallel. Skew
10)
 If two lines lie in the same plane are perpendicular to the same line, then they are parallel.
11) $\qquad$ A polygon with six sides is called a heptagon.
hexagon

Match each term with its drawing below.
12) Isosceles right triangle
13) Obtuse scalene triangle
14) Octagon
15) Hexagon
16) Right scalene triangle

17) Name a pair of angles that are adjacent, but not complementary or supplementary.

18) Name all angles with $R$ as their vertex.

a) $\angle 5, \angle 6, \angle 7$
(b) $\angle \mathrm{DRO}, \angle \mathrm{MRD}, \angle \mathrm{ORM}$
$\begin{array}{ll}\text { a) } \angle \mathrm{HIW} \text { and } \angle \mathrm{HIE} & \text { b) } \angle \mathrm{HIE} \text { and } \angle \mathrm{LIV} \\ \text { c) } \angle \mathrm{HIW} \text { and } \angle \mathrm{VIW} & \text { (d) } \angle \mathrm{EIH} \text { and } \angle \mathrm{HIL}\end{array}$

For \#19-21, determine whether each statement is always $(A)$, sometimes $(S)$, or never $(N)$ true.
19) A plane contains only three points. $\qquad$
infinite
20) Three noncollinear points are contained in only one plane. $\qquad$ $A$
21) If three points are coplanar, they are collinear. S

Use the diagram at the right for \#22-24.
22) What is the intersection of the two planes?
23) What plane contains points $W, X$, and $Y$ ?
Plane WXY

24) Are points $T, Z, W$, and $U$ coplanar or noncoplanar?
Non-coplanar

For \#25 \& 26, sketch, mark and label each figure
25) Isosceles obtuse $\triangle \mathrm{MRD}$ with $\mathrm{MR}=\mathrm{MD}$ and median $\overline{M E}$

27) If $m \angle 1=9 x$ and $m \angle 2=3 x$. Find the value of $x$ if $\angle 1$ and $\angle 2$ are supplementary.

$$
\begin{aligned}
9 x+3 x & =180 \\
12 x & =180 \\
x & =15
\end{aligned}
$$

26) A hexagon SMILEY with vertices $Y, M$, and $L$ joined to form isosceles $\triangle Y M L$

27) $\angle 1$ is complementary to $\angle 3, \angle 2$ is complementary to $\angle 3$. If $m \angle 2=x+24$ and $m \angle 3=8 x-6$, find $m \angle 1$.

$$
\begin{array}{r}
x+2 y+8 x-6=90 \\
9 x+18=90 \\
9 x=72 \\
x=8 \\
m L=32=
\end{array}
$$

Find the missing two terms in the sequence.
29) $3,6,9,15,24,39,63,102$
30) $1,2,5,14,41,122,365,1084$

$$
3369152439
$$

1392781243 729
31) $0,2,6,12,20,30,42,56$
32) $1,2 / 3,4 / 9,8 / 27, \frac{16}{81}, \frac{32}{243}$ $24681012 \quad 14$

$$
\frac{1}{1} \frac{2}{3} \frac{4}{9} \frac{8}{27}
$$

Draw the next shape in each pattern.
35) Find a counterexample to disprove the conjecture: "If the quotient of two numbers is positive, then the two numbers must be positive."
33)


34) - $\therefore \therefore \quad \therefore$
36) Write the indicated form of the following statements.

Afterwards, state if it's true or false.
"A square is a regular polygon."
If-then:
"I it a space, the it is a rouburabgom


Converse:
If it is a regular polygon then it is a square False?

Inverse:
If it is not a square, then it is not a regular

Contrapositive:
If it is not arty. polygon, thenit is not a square.

In \#37-39, determine the logical conclusion and state which law you used: Law of Detachment (LOD), Law of Contrapositive (LOC), or Law of Syllogism (LOS). If no conclusion can be drawn, write "no conclusion."
37) If you live in San Francisco, then you've seen the Golden Gate Bridge. Unfortunately, Josh has not seen the Golden Gate Bridge.

Then he docent love is S.F.

$$
\angle O C
$$

38) If a quadrilateral is a square, then it has four right angles. If a quadrilateral has four right angles, then it is a rectangle.


$$
\cos
$$

39) If three points lie on the same line, they are collinear. Points $A, B$, and $C$ lie on line $k$.

Then the points are collinear $\angle O D$
40) Write the definition of an equiangular polygon as a single biconditional statement.

41) Complete the following truth table.

| $p$ | $q$ | $\sim p$ | $\sim p \wedge q$ |
| :---: | :---: | :---: | :---: |
| $T$ | $T$ | $F$ | $F$ |
| $T$ | $F$ | $F$ | $F$ |
| $F$ | $T$ | $T$ | $T$ |
| $F$ | $F$ | $T$ | $F$ |

42) Suppose you already stated that $\angle 6 \cong \angle 7$ and $\angle 7 \cong \angle 8$. What property of congruence justifies the conclusion that $\angle 6 \cong \angle 8$ ?

43) Find the value of $x$ and $y$ for each diagram. (Not necessarily drawn to scale). Show all algebraic work.


$$
\begin{aligned}
2 x-16 & =50 \\
2 x & =66 \\
x & =33^{\circ}
\end{aligned} \quad y=66^{\circ} \quad y
$$

Complete the following proofs:
44) Given: $B R=U P$


Prove: $B U=R P$


| Statement | Reasons |
| :--- | :--- |
| 1. $m \angle B A T=m \angle M A N$ | Given |
| 2. $m \angle T A M=m \angle T A M$ | Reflexive Property |
| 3. $m \angle B A T+m \angle T A M=m \angle T A M+m \angle M A N$ | Addition prop of = |
| 4. $m \angle B A M=m \angle B A T+m \angle T A M$ |  |
| $m \angle T A N=m \angle T A M+m \angle M A N$ | Angle addition postulate |
| 5. $\therefore m \angle B A M=m \angle T A N$ | Substitution |

